skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ogbe, Dennis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The number of devices connected to Internet of Things (IoT) and massive machine-type communication (mMTC) networks is expected to increase exponentially in the next generation of wireless communication systems, resulting in a new type of “massive” random access network. However, most of the work in this emerging field considers the single-hop setting with direct communication between the users and a fully-equipped base station. In contrast, this work explores the massive random access problem in a two-hop relay setting where users access the network through a femto- or pico-cell relay which itself only has a limited amount of bandwidth/power. We present two low-complexity relaying schemes designed to minimize power consumption and discuss their tradeoffs using numerical simulations. 
    more » « less